1. Express the following rule in function notation "subtract 5, then divide by 3".

a. \(f(x) = \frac{x - 5}{3} \)

b. \(f(x) = x - \frac{3}{5} \)

c. \(f(x) = \frac{x - 3}{5} \)

d. \(f(x) = \frac{x}{3} \)

e. \(f(x) = x - \frac{5}{3} \)

2. Evaluate the function \(f(x) = \frac{5 - x}{5 + x} \) at \(x = 11 \).

a. \(f(11) = -\frac{9}{8} \)

b. \(f(11) = -6 \)

c. \(f(11) = -\frac{3}{8} \)

d. \(f(11) = 0 \)

e. \(f(11) = -\frac{3}{5} \)

3. Evaluate the following piecewise defined function at \(x = 2 \), \(x = 4 \), and \(x = 8 \).

\[f(x) = \begin{cases}
1 & \text{if } x < 4 \\
8x - 2 & \text{if } x \geq 4
\end{cases} \]

a. \(f(2) = 14, f(4) = 8, f(8) = 8 \)

b. \(f(2) = 1, f(4) = 1, f(8) = 62 \)

c. \(f(2) = 14, f(4) = 8, f(8) = 62 \)

d. \(f(2) = 1, f(4) = 30, f(8) = 62 \)

e. \(f(2) = 14, f(4) = 30, f(8) = 62 \)

4. Consider the function.

\(f(x) = x^2 + 4 \)

Evaluate the \(f(x + 4) \) and simplify.

Evaluate the \(f(x) + f(4) \) and simplify.
5. Consider the function.

\[f(x) = 2x + 6 \]

Evaluate the \(f(x^2) \) and simplify.

Evaluate the \((f(x))^2 \) and simplify.

6. For the function \(f(x) = 5x^2 + 1 \), find \(\frac{f(a + h) - f(a)}{h} \), \(h \neq 0 \).

 a. \(\frac{f(a + h) - f(a)}{h} = 5h - 10a \)
 b. \(\frac{f(a + h) - f(a)}{h} = 5h + 5a \)
 c. \(\frac{f(a + h) - f(a)}{h} = 5h + 10a \)
 d. \(\frac{f(a + h) - f(a)}{h} = h + a \)
 e. \(\frac{f(a + h) - f(a)}{h} = 10h + 5a \)

7. The domain of the function \(f(x) = \frac{4}{5x + 15} \) is \((-\infty, -3) \cup (-3, \infty) \).

 a. True
 b. False
Sketch the graph of the function \(f \) and find the domain from the graph.

\[f(x) = \sqrt{x + 5} \]

Domain

- **a.** Domain: \([-5, \infty)\)
- **b.** Domain: \([0, \infty)\)
- **c.** Domain: \([0, \infty)\)
- **d.** Domain: \((-\infty, 5]\)
- **e.** Domain: \([-5, \infty)\)
Sketch the graph of the function.

\[f(x) = -1 \]
Sketch the graph of the function.

\[F(x) = \frac{3}{x + 1} \]
Sketch the graph of the following piecewise defined function.

\[f(x) = \begin{cases}
2 & \text{if } x \leq 3 \\
 x + 3 & \text{if } x > 3
\end{cases} \]
12 What is the average rate of change of the function \(f(x) = 2x - 4 \) between \(x = 5 \) and \(x = 6 \) ?

a. \(-4\)

b. \(4\)

c. \(6\)

d. \(-2\)

e. \(2\)

13 The graph of a function is given below. Determine the interval on which the function is decreasing.

a. \(x \in (-\infty, 4)\)

b. \(x \in (-\infty, 2) \cup (4, \infty)\)

c. \(x \in (4, \infty)\)

d. \(x \in (-4, -2)\)

e. \(x \in (2, 4)\)

14 If \(g\) and \(u\) are both odd functions, then the product of \(g\) and \(u\) is an ________ function.

15 In order for \(f(x) = x^n\) to be an even function, the integer \(n\) has to be an ________ number.
The graph of the function \(y = x^2 - 4x \) is given below. Find the coordinate of its vertex and its intercepts.

vertex \((x, y)\) (__, __)

\(x\) - intercept(s) ______

\(y\) - intercept(s) ______
17 The graph of the function \(y = -x^2 + 6x \) is given below. Find the coordinates of its vertex and its intercepts.

![Graph of the function \(y = -x^2 + 6x \).](image)

- a. vertex \((4, -9)\);
- x-intercepts 0, 6;
- y-intercept 4

- b. vertex \((3, 18)\);
- x-intercepts 0, 6;
- y-intercept 0

- c. vertex \((-3, 8)\);
- x-intercepts 0, 8;
- y-intercept 0

- d. vertex \((3, 9)\);
- x-intercepts 0, 6;
- y-intercept 0

- e. vertex \((6, -18)\);
- x-intercepts 0, 5;
- y-intercept 0

18 If a ball is thrown directly upward with a velocity of 32 ft/s, its height (in feet) after \(t \) seconds is given by \(y = 32t - 16t^2 \). What is the maximum height attained by the ball?

- a. 13 feet
- b. 7 feet
- c. 4 feet
- d. 16 feet
- e. 10 feet
Find the domain of the function.

\[f(x) = \frac{\sqrt{x + 8}}{x - 9} \]

a. \(x \in [-8, \infty) \)
 b. \(x \in [-8, 9) \cup (9, \infty) \)

c. \(x \neq 9 \)
 d. \(x \in (-\infty, -9) \cup (-9, 8] \)

e. \(x \in (-\infty, -9) \cup (-9, 8] \)

Use \(f(x) = 2x - 5 \) and \(g(x) = 5 - x^2 \) to evaluate the expression \((g \circ f)(-1)\).

a. \((g \circ f)(-1) = -48\)
 b. \((g \circ f)(-1) = -44\)

c. \((g \circ f)(-1) = -52\)
 d. \((g \circ f)(-1) = -50\)

e. \((g \circ f)(-1) = -46\)

Determine whether the function \(f(x) = \sqrt{9x} \) is one-to-one.

a. No
 b. Yes

Is \(f(x) = 8x^4 + 1 \) not a one-to-one function?

a. Yes
 b. No

Assume \(f \) is a one-to-one function. If \(f(x) = 4 - 2x \), find \(f^{-1}(-2) \).

\(f^{-1}(-2) = \)_____

Use the Property of Inverse Functions to find the inverse function of \(f(x) = x + 8 \).

a. \(f^{-1}(x) = -x - 8 \)
 b. \(f^{-1}(x) = x - 8 \)

c. \(f^{-1}(x) = x + 8 \)
 d. \(f^{-1}(x) = -x + 8 \)

e. \(f^{-1}(x) = 8x - 8 \)
25 Find the inverse function $f^{-1}(x)$ of $f(x) = \frac{1}{x + 5}$.

a. $f^{-1}(x) = x + 5$

b. $f^{-1}(x) = \frac{1}{x} - 5$

c. $f^{-1}(x) = x - 5$

d. $f^{-1}(x) = -\frac{1}{x} + 5$

e. $f^{-1}(x) = \frac{1}{x} + 5$

26 Sketch the graph of the function $P(x) = (x - 2)(x + 2)(x - 1)$.

Choose the correct answer from the following.
27 Find the exponential function $f(x) = a^x$ whose graph is given.

Choose the answer from the following:

- a. $f(x) = 3^x + 3$
- b. $f(x) = 3^{-x}$
- c. $f(x) = 3^x$
- d. $f(x) = 3^x$

28 The population of a certain species of bird is limited by the type of habitat required for nesting. The population behaves according to the logistic growth model

$$n(t) = \frac{1060}{0.2 + 27e^{-0.208t}}$$

where t is measured in years. What size does the population approach as time goes on?

Choose the answer from the following:

- a. 1060
- b. 10600
- c. 15900
- d. 5300
29 Express the equation \(\ln (x + 3) = 5 \) in exponential form.

Choose the correct answer from the following:

a. \(x = e^5 - 3 \)

b. \(x = e^3 - 5 \)

c. \(x = e^3 + 5 \)

d. No correct answer

e. \(x = e^5 + 3 \)

30 Evaluate the expression \(\log_5 25 \).

Choose the correct answer from the following.

a. 25

b. No correct answer

c. 5

d. 2

31 Use the definition of the logarithmic function to find \(x \):

\[\log_6 x = 0 \]
1. d 2. c 3. d 4. \[f(x+4) = x^2 + 8x + 20; \]
 \[f(x) + f(4) = x^2 + 24 \]
5. \[f(x^2) = 2x^2 + 6; \]
 \[(f(x))^2 = 4x^2 + 24x + 36 \]
6. c 7. a 8. a 9. d 10. c 11. c 12. e 13. e 14. even 15. even 16. \[\frac{-4}{0.4} \]