MAT241FinalFall07

Multiple Choice
Identify the choice that best completes the statement or answers the question.

1. Find all the critical numbers of the function:
 \[g(x) = 3x + \sin(3x) \]
 a. \(\frac{\pi(2n + 1)}{6} \)
 b. \(\frac{\pi(2n + 1)}{3} \)
 c. \(\frac{\pi}{3} \)
 d. \(\frac{2\pi n}{3} \)

2. Find the absolute minimum values of
 \[y = 8x^2 - 64x + 3 \]
 on the interval \([0, 5]\).
 a. 64
 b. 4
 c. -128
 d. -125

3. Find all numbers \(c \) that satisfy the conclusion of The Mean Value Theorem.
 \[f(x) = 3x^2 + 5x + 2, [-7, 7] \]
 a. \(c = 0 \)
 b. \(c = 5 \)
 c. \(c = 3 \)
 d. \(c = 2 \)

4. How many real roots does the equation \(x^5 + 2x + 1 = 0 \) have?
 a. exactly one real root
 b. no real root
 c. exactly two real root
 d. exactly three real root
5. Find the intervals on which the following function \(f \) is increasing:

\[f(x) = x^3 - 108x + 8 \]

a. \((-\infty, 6)\)
b. \((-\infty, -6), (6, \infty)\)
c. \((-\infty, -18), (18, \infty)\)
d. \(-6, 6\)
e. \((-6, \infty)\)

6. How many points of inflection are on the graph of the function:

\[f(x) = 16x^3 + 2x^2 - 9x - 15 \]

a. 4
b. 1
c. 3
d. 2

e. Not enough information provided

7. Find the limit.

\[\lim_{x \to -9} \frac{x^2 + 7x - 18}{x^2 + 9} \]

a. 7
b. \(-\infty\)
c. \(\infty\)
d. 0
e. -11

8. Find two positive numbers whose product is 100 and whose sum is a minimum.

a. 2, 50
b. 4, 25
c. 10, 10

d. Not enough information provided

9. Suppose the line \(y = 25x - 6 \) is tangent to the curve \(y = f(x) \) when \(x = -2 \). If Newton's method is used to locate a root of the equation \(f(x) = 0 \) and the initial approximation is \(x_1 = -2 \), find the second approximation \(x_2 \).

a. \(x_2 = \frac{6}{25} \)
b. \(x_2 = \frac{-6}{25} \)
c. \(x_2 = \frac{8}{25} \)
10. Find the most general antiderivative of the function:

\[f(x) = 9x^2 - 6x + 10. \]

a. \[F(x) = 9x^3 - 6x^2 + 10x + C \]
b. \[F(x) = 3x^3 - 2x^2 + 10x + C \]
c. \[F(x) = 15x^5 - 12x^4 + 10x + C \]

11. Find the most general antiderivative of the function:

\[f(x) = \frac{6}{x}, \quad x \neq 0. \]

a. \[F(x) = -\frac{1}{x} + C \]
b. \[F(x) = -\frac{1}{x^8} + C \]
c. \[F(x) = \frac{1}{x^6} + C \]

12. Find the most general antiderivative of the function:

\[f(x) = 3\cos x - 2\sin x \]

a. \[F(x) = 3\sin(x) + 2\cos(x) + C \]
b. \[F(x) = 3\sin(x) - 2\cos(x) + C \]
c. \[F(x) = -3\sin(x) + 2\cos(x) + C \]

13. Find \(f \):

\[f''(x) = 81 \cos(9x) \]

a. \[f(x) = -\cos(9x) + Cx + D \]
b. \[f(x) = y = 81\cos(x) + Cx + D \]
c. \[f(x) = y = -\cos(9x) + Cx^2 + D \]
14. Find an expression for the area from 3 to 9 under the curve \(y = x^3 \) as a limit.

\[
\lim_{n \to \infty} \sum_{i=1}^{n} \left(3 + \frac{7i}{n} \right)^3 \frac{8}{n}
\]
\[
\lim_{n \to \infty} \sum_{i=1}^{n} \left(3 + \frac{8i}{n} \right)^3 \frac{5}{n}
\]
\[
\lim_{n \to \infty} \sum_{i=1}^{n} \left(3 + \frac{9i}{n} \right)^3 \frac{7}{n}
\]
\[
\lim_{n \to \infty} \sum_{i=1}^{n} \left(3 + \frac{6i}{n} \right)^3 \frac{6}{n}
\]
\[
\lim_{n \to \infty} \sum_{i=1}^{n} \left(3 + \frac{7i}{n} \right)^3 \frac{7}{n}
\]

15. Express the limit as a definite integral on the given interval.

\[
\lim_{x \to \infty} \sum_{i=1}^{n} \left[5x_i^2 - 15x_i \right] \Delta x , \quad [10,12]
\]

\[
\int_{10}^{12} \left(5x^2 + 15x \right) \, dx
\]
\[
\int_{10}^{12} \left(5x^2 - 15x \right) \, dx
\]
\[
\int_{5}^{15} \left(10x^2 - 12x \right) \, dx
\]
16. If 1,800 cm2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box. Enter your answer without units, and round to the nearest integer if necessary.

Answer __________________________

17. Use Newton’s method to derive the following algorithm used by the ancient Babylonians to compute \sqrt{a}:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right).$$

(Hint: you can derive it by applying Newton's method to the equation $x^2 - a = 0$.)

18. A stone was dropped off a cliff and hit the ground with a speed of 256 ft/s. What is the height of the cliff?

Use a value of 32 ft/s for g, and enter the number of feet without the units.

Answer ______________________________
19. Estimate to the hundredth the area from 1 to 5 under the graph of \(f(x) = \frac{4}{x} \) using four approximating rectangles and right endpoints.

Answer

Short Answer

20. Find the point on the line \(y = 2x + 9 \) that is closest to the origin.

Answer

21. Find \(f \):

\[f''(x) = 60x \]

\[f(1) = 15 \]

\[f'(1) = 34 \]

Answer

22. A particle moves along a straight line with velocity function \(v(t) = 6 \sin(t) - 3 \cos(t) \) and its initial displacement is \(s(0) = 1 \) Find its position function.

Answer
MAT241FinalFall07
Answer Section

MULTIPLE CHOICE

1. ANS: B PTS: 1
2. ANS: D PTS: 1
3. ANS: A PTS: 1
4. ANS: A PTS: 1
5. ANS: B PTS: 1
6. ANS: B PTS: 1
7. ANS: E PTS: 1
8. ANS: C PTS: 1
9. ANS: A PTS: 1
10. ANS: B PTS: 1
11. ANS: A PTS: 1
12. ANS: A PTS: 1
13. ANS: A PTS: 1
14. ANS: D PTS: 1
15. ANS: B PTS: 1

NUMERIC RESPONSE

16. ANS: 7,348 PTS: 1
17. ANS: 11.045361 PTS: 1
18. ANS: 1,024 PTS: 1
19. ANS: 5.13 PTS: 1

SHORT ANSWER

20. ANS: \(\left(-\frac{18}{5}, \frac{9}{5} \right) \) PTS: 1
21. ANS:
 \[f(x) = 10x^3 + 4x + 1 \]

 PTS: 1

22. ANS:
 \[s(t) = 7 - 6\cos(t) - 3\sin(t) \]

 PTS: 1