Problem 328, #16

Show that of all rectangles with a given area \(A \), the one with the smallest perimeter \(P \) is a square.

Consider the rectangle with sides of length \(l \) and width \(w \), respectively.

\[
\begin{align*}
A &= l \times w \\
P &= 2l + 2w \\
\end{align*}
\]

Must choose \(l \) and \(w \) such that \(P \) is maximized and \(A = l \times w \) holds.

Let’s write \(P \) as a function of one variable \(l \). Using \(A = l \times w \), we have \(w = \frac{A}{l} \).

So

\[
P(l) = 2l + 2 \frac{A}{l}
\]

To maximize \(P \) we find \(l \) such that \(P'(l) = 0 \)

\[
P'(l) = 2 - 2A \frac{1}{l^2}
\]

Since \(A = l \times w \), we have

\[
0 = 2 - 2A \frac{1}{l^2}
\]

\[
l^2 = A
\]

\[
l = \sqrt{A}
\]

Since \(l \) and \(w \) are the same, the figure is a square.
Find points on the ellipse \(4x^2 + y^2 = 4\) that are farthest away from \((1,0)\).

Must maximize \((x-1)^2 + (y-0)^2\) where \((x,y)\) is on the ellipse.

Use ellipse equation to solve for \(y\) in terms of \(x\).

\[
4x^2 + y^2 = 4
\]

\[
y^2 = 4 - 4x^2
\]

\[
y = \sqrt{4 - 4x^2} = 2\sqrt{1-x^2}
\]

The distance \((x-1)^2 + y^2\) can now be written as a function of \(x\).

\[
d(x) = (x-1)^2 + 4 - 4x^2
\]

Or

\[
d(x) = -3x^2 - 2x + 5
\]

To find maximum, solve \(d'(x) = 0\).

\[
d'(x) = -6x - 2, \quad -6x - 2 = 0 \quad \text{so} \quad x = -\frac{1}{3}
\]

The corresponding \(y = 2\sqrt{1-x^2}\). So \(y = 2\sqrt{\frac{2}{3}} = \pm \frac{4\sqrt{2}}{3}\).

The points on the ellipse farthest from \((1,0)\) are \((-\frac{1}{3}, \pm \frac{4\sqrt{2}}{3})\).
Let's center the rectangle inscribed in the ellipse at the origin. If we label the right corner of the rectangle (x, y), then the other corners must be labelled as indicated above. The lengths of the sides also are shown in the above figure. The area of the rectangle is

$$4xy$$

Since x and y are on the ellipse, they satisfy

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

We have to choose the point (x, y) on the ellipse that maximizes the area of the rectangle.
First let's write y in terms of x by using the equation of the ellipse,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2}$$

$$y = b \left(1 - \frac{x^2}{a^2} \right)^{\frac{1}{2}}$$

Thus the area A_{xy} can be written as a function of x,

$$A(x) = 4x \cdot b \left(1 - \frac{x^2}{a^2} \right)^{\frac{1}{2}}$$

To find the x value that maximizes the area, we take the derivative with respect to x, set it to zero, and solve.

$$A'(x) = 4b \left[\frac{x}{2} \left(1 - \frac{x^2}{a^2} \right)^{-\frac{1}{2}} \cdot \left(-\frac{2x}{a^2} \right) + \left(1 - \frac{x^2}{a^2} \right)^{\frac{1}{2}} \right]$$

To find x such that $A(x) \to 0$, we need to do some algebra.
Let's rewrite $A'(x)$ as

$$A'(x) = 4b \left(1 - \frac{x^2}{a^2}\right)^{\frac{1}{2}} \left[-\frac{x^2}{a^2} + 1 - \frac{x^2}{a^2}\right]$$

or

$$A'(x) = 4b \left(1 - \frac{x^2}{a^2}\right)^{\frac{1}{2}} \left[-2x^2 + 1\right]$$

Now the only way $A'(x)$ could be 0 is if

$$1 - \frac{2x^2}{a^2} = 0 \quad \text{or} \quad x^2 = \frac{a^2}{2} \quad \text{or} \quad x = \frac{a}{\sqrt{2}}$$

We have the optimal x. Let's use the ellipse equation to get the corresponding y.

$$y = b \left(1 - \frac{(\frac{a}{\sqrt{2}})^2}{a^2}\right) \frac{1}{2}$$

$$y = b \left(1 - \frac{1}{2}\right)^{\frac{1}{2}}$$

$$y = \frac{b}{\sqrt{2}}$$

The maximal area is thus

$$4xy = 4 \frac{a}{\sqrt{2}} \frac{b}{\sqrt{2}} = 2ab$$
P 329, #29

A right circular cylinder is inscribed in a sphere of radius \(r \). Find the largest volume for the cylinder.

Formulas we need:
- Volume of cylinder: \(V = \pi r^2 h \), \(r \) radius of cylinder
- Equation of sphere: \(x^2 + y^2 + z^2 = r^2 \)

The cylinder is determined by considering the rectangle formed in the \(x \) and \(z \) plane.

Key:
- \(P(x,0,z) \) point on sphere and cylinder.
- \(h = 2z \)
- \(h = \rho = x \)

\[
V = \pi r^2 h
\]
\[
V = \pi x^2 z
\]
\[
V = 2\pi x^2 z
\]

\[
V(x) = 2\pi x^2 (r^2 - x^2)^{1/2}
\]

\[
V(x) = 2\pi \left[\frac{1}{2} x^2 (r^2 - x^2)^{1/2} + 2x (r^2 - x^2)^{1/2} \right]
\]

\[
= 2\pi \left[(r^2 - x^2)^{1/2} \left(x^3 + 2x (r^2 - x^2) \right) \right]
\]
\[V'(x) = 0 \Rightarrow 2\pi r^2 - 3x^3 = 0 \]

\[2\pi r^2 = 3x^3 \]

\[\frac{2}{3} r^2 = x^2 \]

Optimal \(x \) in terms of radius \(r \)

\[\rightarrow \frac{\sqrt{2}}{\sqrt{3}} r = x \]

Find \(z \) in terms of \(r \)

\[z = (r^2 - x^2)^{\frac{1}{2}} \]

\[z = \left(r^2 - \frac{2}{3} r^2 \right)^{\frac{1}{2}} \]

\[z = r \left(1 - \frac{1}{3} \right)^{\frac{1}{2}} \]

\[z = r \left(\frac{\sqrt{2}}{\sqrt{3}} \right) \]

\[z = r \frac{\sqrt{2}}{\sqrt{3}} \]

Maximum volume of the inscribed cylinder

\[V = \frac{4\pi r^3}{3\sqrt{3}} \]