F is continuous.

Exist and are both F(R).

\[\frac{R}{R} = \frac{R}{R} = \frac{R}{R} \]

\[\lim_{x \to R} f(x) = \lim_{x \to R} f(x) = \lim_{x \to R} f(x) \]

\[\frac{R}{R} + \frac{R}{R} = \frac{R}{R} \]

At \(R = \frac{R}{R} \), \(f(R) = \frac{R}{R} \).

For \(R \neq 0 \), it is obviously continuous if \(R \neq 0 \).

Is \(F \) continuous?

\(\) a quadratic function constant.

\(R \) radicals.

\(M \) mass of earth.

\[\frac{R}{R} \text{ if } R \geq R \]

\[\frac{R}{R} \text{ if } R < R \]

\[F(r) = \left\{ \begin{array}{ll} \frac{R}{R} & \text{if } R \geq R \\ \frac{R}{R} & \text{if } R < R \end{array} \right. \]

P.124 \# 40