Choose \(c \) so that \(f \) continuous on \(X \times I \)

\[f(x) = \begin{cases}
 (x^2 + 2x)^c & \text{if } x \leq 2 \\
 x^3 - cx & \text{if } x > 2
\end{cases} \]

\[\lim_{x \to 2^-} x^3 - cx = 8 - 2c \]

Next, a right limit must be some \(c \)

\[\lim_{x \to 2^+} (x^2 + 2x)^c = \frac{2c}{3} + 4 = \frac{2c}{3} + \frac{4}{3} = 2 \]

\[c = 6 \]

\[f(x) = (x^2 + 2x)^6 \]

Show there is a \(c \) such that \(f'(c) = \frac{10 \sin(x)}{x^2} \) for \(x > 1000 \)

\[f(x) = x^2 + 10 \sin(x) \]

Show there is a \(c \) such that \(f(c) = 1000 \) since \(f \) continuous on \([0, 1000] \), \(f \) exist.